Kinetic selection vs. free energy of DNA base pairing in control of polymerase fidelity.

نویسندگان

  • Keriann Oertell
  • Emily M Harcourt
  • Michael G Mohsen
  • John Petruska
  • Eric T Kool
  • Myron F Goodman
چکیده

What is the free energy source enabling high-fidelity DNA polymerases (pols) to favor incorporation of correct over incorrect base pairs by 10(3)- to 10(4)-fold, corresponding to free energy differences of ΔΔGinc∼ 5.5-7 kcal/mol? Standard ΔΔG° values (∼0.3 kcal/mol) calculated from melting temperature measurements comparing matched vs. mismatched base pairs at duplex DNA termini are far too low to explain pol accuracy. Earlier analyses suggested that pol active-site steric constraints can amplify DNA free energy differences at the transition state (kinetic selection). A recent paper [Olson et al. (2013)J Am Chem Soc135:1205-1208] used Vent pol to catalyze incorporations in the presence of inorganic pyrophosphate intended to equilibrate forward (polymerization) and backward (pyrophosphorolysis) reactions. A steady-state leveling off of incorporation profiles at long reaction times was interpreted as reaching equilibrium between polymerization and pyrophosphorolysis, yielding apparent ΔG° = -RTlnKeq, indicating ΔΔG° of 3.5-7 kcal/mol, sufficient to account for pol accuracy without need of kinetic selection. Here we perform experiments to measure and account for pyrophosphorolysis explicitly. We show that forward and reverse reactions attain steady states far from equilibrium for wrong incorporations such as G opposite T. Therefore,[Formula: see text]values obtained from such steady-state evaluations ofKeqare not dependent on DNA properties alone, but depend largely on constraints imposed on right and wrong substrates in the polymerase active site.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic measurement of 2-aminopurine cytosine and 2-aminopurine thymine base pairs. as a test of DNA polymerase fidelity

Enzyme kinetic measurements are presented showing that Km rather than maximum velocity (Vm,.) discrimination governs the frequency of forming 2-aminopurinecytosine base mispairs by DNA polymerase a. An in vitro system is used in which incorporation ofdTMP or dCMP occurs opposite a template 2-aminopurine, and values for Km and Vm. are obtained. Results from a previous study in which dTTP and dCT...

متن کامل

Prechemistry Nucleotide Selection Checkpoints in the Reaction Pathway of DNA Polymerase I and Roles of Glu710 and Tyr766

The accuracy of high-fidelity DNA polymerases such as DNA polymerase I (Klenow fragment) is governed by conformational changes early in the reaction pathway that serve as fidelity checkpoints, identifying inappropriate template-nucleotide pairings. The fingers-closing transition (detected by a fluorescence resonance energy transfer-based assay) is the unique outcome of binding a correct incomin...

متن کامل

Mismatch extension ability of yeast and human DNA polymerase eta.

DNA polymerase eta (Poleta) functions in error-free replication of UV-damaged DNA, and in vitro it efficiently bypasses a cis-syn T-T dimer by incorporating two adenines opposite the lesion. Steady state kinetic studies have shown that both yeast and human Poleta are low-fidelity enzymes, and they misincorporate nucleotides with a frequency of 10(-2)-10(-3) on both undamaged and T-T dimer-conta...

متن کامل

DNA polymerase minor groove interactions modulate mutagenic bypass of a templating 8-oxoguanine lesion

A major base lesion resulting from oxidative stress is 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxoG) that has ambiguous coding potential. Error-free DNA synthesis involves 8-oxoG adopting an anti-conformation to base pair with cytosine whereas mutagenic bypass involves 8-oxoG adopting a syn-conformation to base pair with adenine. Left unrepaired the syn-8-oxoG/dAMP base pair results in a G-C to ...

متن کامل

Fidelity of nucleotide incorporation by human mitochondrial DNA polymerase.

We have examined the fidelity of polymerization catalyzed by the human mitochondrial DNA polymerase using wild-type and exonuclease-deficient (E200A mutation) forms of recombinant, reconstituted holoenzyme. Each of the four nucleotides bind and incorporate with similar kinetics; the average dissociation constant for ground state binding is 0.8 microm, and the average rate of polymerization is 3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 16  شماره 

صفحات  -

تاریخ انتشار 2016